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Abstract 
The convergence of Internet of Things (IoT), Artificial Intelligence (AI), 5G, Big Data and cloud 
computing technologies is creating an emerging edge to cloud computing model to overcome the 
challenges of traditional cloud computing in supporting the upcoming Internet of (smart and 
autonomous) things. Edge computing complements cloud computing by offering local computational 
facilities to enable processing of extremely large amount of data originated from IoT devices and 
providing intelligent decisions close to the things. As edge devices are geographically dispersed and 
may be resource constraint, many challenges exist in deploying and executing intelligent applications 
over these heterogeneous resources. This chapter will address these challenges through 3 sections to 
discuss: 1) what is edge computing and the resource management approaches in edge environments, 
especially application deployment mechanisms in the IoT-Edge-Cloud continuum; 2) the benefits and 
challenges of implementing distributed intelligence and data analytics in the edge environments with 
exemplary use cases; 3) the distributed learning architecture and algorithms for edge computing, with 
a special focus on distributed deep learning based approaches.  

Keywords 
Edge Computing, Fog Computing, Resource Management, Resource Orchestration, Edge Intelligence, 
Distributed Deep Learning, Parallelism, Distributed AI, Embedded Devices, Resource Constraint.  

1 Edge Computing and Resource Management 

1.1 Introduction 
With the emergence of Internet of Things (IoT), where any device, however small, is able to connect 
to the Internet and monitor/control physical elements, many applications were made possible such 
as smart cities, smart homes, smart healthcare and smart transportation. IoT connections are 
established by resource-constrained edge devices which connect to existing network infrastructures. 
This enables an IoT-to-cloud architecture in which the infrastructure between device and cloud is only 
used as a communication platform. Current cloud computing helps us to store and process bulk 
volumes of data from battery drained devices; however, with the rate, distribution and scale of 
extraordinary data from IoT devices, processing all the data in the cloud resources would be 
impractical. However, not every stream analytic is of the same importance or needs the same 
requirement, and by processing streams closer to the proximity of stream sources (i.e. IoT devices), it 
leaves us a chance to make more intelligent trade-offs among latency, bandwidth and data privacy. 
For instance, in the case of IoT stringent latency requirements, or geographically constrained smart 
IoT devices, cloud computing cannot fully address these requirements; or as another example, in the 
case of health care, for the sake of patient safety, we can’t fully rely on remote cloud resources 
because of the possibility of network and/or cloud real time resource request failures. Generally, the 
current state of existing cloud infrastructure is limited to only two unsatisfactory actions: either (1) 
offload and process all input IoT data in the cloud which cause additional communication costs and 
latency, or (2) process all data locally which is not possible especially in case of applications with high-
computational overhead. More specifically, to support IoT applications, several challenges must be 
overcome [1] [2] [3]: (1) Latency: Generally, most IoT applications have stringent latency requirements 
that cloud computing cannot adequately satisfy. For example, road safety and self-driving car services 
require latencies of less than 50ms while smart factories have even stricter requirements, with 
latencies ranging from 250μs to 10ms. Latency incurred to send data to the cloud, for processing via 
the core network, may cause unacceptable latency; (2) bandwidth: rapid increase in the number of 
‘smart things’ producing data within the next few years, as projected in ABI Research in 2015, shows 
that data captured by IoT devices will exceed 1.6 zettabytes by 2020 (e.g., hundreds of terabytes per 
day in the case of smart factories, or gigabytes of data per minute in the case of self-driving cars). 
Sending all this data to the cloud would cause excessive stress on the backhaul communication links; 
(3) Privacy and security: There are a lot of use cases where IoT devices generate a collection of 
sensitive data (e.g., end user identity, location or healthcare data) that requires more careful privacy 
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preservation, if transmitted over the public Internet to the cloud [4]. Existing cloud privacy and 
security measurements cannot be directly applied to IoT-Cloud continuum due to its distinct 
characteristics, such as large scale geo-distribution, heterogeneity or mobility. Scaling out in 
geographical span leads to no centralized control over the data travelling from the IoT device to the 
Cloud, and relying merely on resource-constrained IoT devices for data encryption/decryption is not 
possible due to insufficient IoT device resources; thus, new privacy, confidentiality, integrity and 
availability challenges arise; and (4) Context awareness: Context is formally defined as “any 
information that can be used to characterize the situation of an entity” [5]. Context information in IoT 
era can particularly include, for instance, information about a set of nearby devices, or local network 
status. Physical distance between Cloud and IoT devices results in lack of proximity which, in turn, 
causes only limited context to be shared between Cloud and IoT. For example, let us consider a cloud-
based service that detects car accidents in roads or at intersections. Due to the lack of local context 
information, that service won’t be able to disseminate alerts to other vehicles in the vicinity of the 
accident. Therefore, there is a need to design a new computing paradigm to address these challenges. 

1.2 Towards Edge/Fog Computing 
To overcome cloud deficiencies, a new paradigm, called fog computing has emerged [6]. As fog 
computing and edge computing are both widely used by the community to denote a similar concept, 
this chapter uses the two terms interchangeably. This new paradigm has been introduced as an 
extension of cloud computing paradigm; it moves the computing (and storage) resources to the 
proximity of devices/users from the core to the edge of the network (see Figure 1-1). The objective is 
to support wide range of IoT applications, and thus processing data anywhere along the IoT-Fog 
(Edge)-Cloud continuum. This distributed computing structure has inherent advantages; it also 
provides system scalability which allows the infrastructure to support processing of large-scale data 
generated by geographically distributed IoT devices. With fog computing, processing of the data is 
performed closer to the edge, and only digests or exceptions are sent into the cloud for more 
processing or storage. 

 
Figure 1-1: IoT-Fog-Cloud Architecture 

 
It is a platform placed between traditional cloud infrastructure and the things, as a bridge, to provide 
storage, computation and networking capacities (Figure 1-1). It is considered as complementary to the 
cloud, addressing emerging IoT applications that require low latency and/or fast mobility support. A 
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common example that is often used to distinguish fog and cloud computing is whether ultra-low 
latency applications can be supported while maintaining satisfactory quality of service (QoS). Fog 
computing enables organizations to process inordinate amount of real-time and low-latency IoT data 
locally at the edge without consuming the organization's network bandwidth to send all the data back 
and forth to the cloud. Furthermore, by analysing and processing data closer to the source, Fog 
Computing can significantly improve the application performance. 

The main difference between cloud and fog computing is also regarded in term of scale of hardware 
components associated with these computing paradigms. Cloud computing provides high availability 
of computing resources at relatively high power consumption, while fog computing provides 
moderate availability of computing resources at lower power consumption. Cloud computing typically 
utilizes large data centres, whereas fog computing uses small servers, routers, switches, gateways, 
and/or access points. Fog computing can be accessed through connected devices from the edge of the 
network, whereas cloud computing must be accessed through the wide area network core. Moreover, 
continuous Internet connectivity is not essential for the fog-based services to work. That is, the 
services can work independently with low or no Internet connectivity and send necessary updates to 
the cloud whenever the connection is available. Cloud computing, on the other hand, requires devices 
to be connected when the cloud service is in progress.  

However, real-time data processing frameworks at the edge of the network is still an open research 
area [7]. Edge computing is indeed still at its infancy and many challenges have to be addressed. 
Despite, newly introduced commercial systems such as Azure IoT edge and AWS Greengrass, they still 
do not integrate mechanisms to recover from failure, nor do they include to dynamically distribute 
processing across devices, edge equipment and cloud infrastructure and coordinate it efficiently, as 
needed. Indeed, finding the best place(s) in the fog layer corresponding to a particular processing 
service (e.g., data trimming, face recognition) is a difficult problem. There is always a challenge to 
determine ideal trade-off between computing costs and transmission costs for an optimal placement 
while satisfying the service requirements (e.g., delay). This challenge is exacerbated due to the 
uncertain behaviour of the fog layer especially communication links connecting fog nodes to fog nodes, 
fog nodes to the cloud, and IoT devices to the fog nodes. Intuitively, one may say that by placing the 
service components as close as possible to the edge devices we can reduce transmission costs.  
However, fog nodes close to the edge are likely to have limited processing and storage capabilities. In 
addition, these nodes are often not as robust or well-maintained as centralized cloud resources, and 
solutions instilling resilience to failure are required. So they may not be capable of hosting 
sophisticated services. Furthermore, the service components may have different hardware and/or 
software requirements; fog nodes are also heterogeneous in terms of their hardware and software 
capabilities. Finally, with the characteristics of edge computing arise also new security challenges 
where existing mechanisms for cloud computing cannot be directly applied [8]. Some of the 
challenging security issues in edge computing include managing trust. Trust plays an important role in 
edge computing because processing is no longer centralized in the cloud. Solutions need to be devised 
to verify that devices where processing is performed are indeed genuine. Achieving trust in this 
context requires a robust trust model in place, a topic that has been barely investigated in the 
literature. 

1.3 Resource Management in Edge/Fog Computing 
The resource management problem that has been studied the most in the literature is resource 
optimization; the objective is to find the best place(s) in the IoT-Fog-Cloud continuum to process data, 
generated by IoT devices. The definition of the term ‘best’ varies depending on the considered system. 
Generally, it means allocating the required resources to process data that maximizes resource 
utilization while satisfying the requirements (e.g., delay) of IoT applications.  

Yu et al. [9] proposed an optimization model to jointly study service placement and data routing in the 
fog. However, they focus only on fog tier and not the IoT-Fog-Cloud continuum. Similarly, in [10] and 
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its extension [11], the authors proposed a simulation-based approach to optimize IoT service 
placement in the fog. However, these approaches [9] [10] [11] do consider an IoT service as a single 
task which is not the case for several IoT services that are composed of more than one task. 
Furthermore, the approaches in [10] [11] support only batch processing of service requests. Gu et al. 
[12] investigated a fog-based resource management scheme for medical cyber-physical systems taking 
into account base station association, task distribution, and VM placement, aiming at minimizing the 
communication and VM deployment costs. However, they focus only on the fog tier which consists of 
only base stations. 

Cao et al. [13] realized actual edge computing systems to collect and analyse IoT data (related to 
patients’ fall detection), in order to achieve critical monitoring. However, in their implementation, 
sensitive real-time data processing is statically assigned to specific edge equipment without a 
particular attention dedicated to resilience to changes (e.g., overload and failure). Perera et al. [14] 
placed their computation containers on a single node at leaf-tier of the fog for pre-processing 
regardless of its burden on the fog node. Gia et al. [15] made use of two or more edge nodes on a 
direct path between IoT devices and the cloud without a specific coordination between processing at 
the edge and cloud. An example is described by López et al. [16], in which they have developed shirts 
with embedded sensors that collect physiological data about the patient and also act as fog gateways. 
However, it has been shown that coordination between edge computing and cloud computing is 
necessary for efficient deployment [17].  

Benoit et al. [18] demonstrated that scheduling linear chains of processing operators onto a cluster of 
heterogeneous computing resources is an NP-Hard problem. Shen et al. [19] proposed Cisco’s 
Connected Streaming Analytics (CSA) in which an architecture is provided to efficiently handle data 
stream processing queries for IoT applications by exploiting data centre and edge computing resources. 
The authors in [20] analysed the placement problem for a subset of distributed streaming application 
topologies, i.e., serial parallel decomposable graphs. This allowed them to exploit strong theoretical 
foundations and proposed an approximation algorithm, which, however, could allocate processing 
elements only on resources with uniform capacity. Huang et al. [21] elegantly rearranged the Multi-
Constrained Optimal Path problem to model and solve the service composition problem. Nevertheless, 
their model allows only to express constraints on communication links but not on computing resources. 
Cardellini et al. [22] introduced an integer programming formulation taking into account resource 
heterogeneity for the Optimal Distributed Stream Processing Problem (ODP). But this approach is less 
general since it is not tied up to both correlated and uncorrelated processing elements. Mayer et al. 
[23] proposed EmuFog which is an emulation framework tailored for fog computing scenario that 
enables the emulation of real applications and workloads. However, they assume the existence of the 
communication topology and use very simplistic greedy algorithms to place fog nodes. 

In summary, there have been several contributions in resource management and particularly resource 
optimization. However, there is not a single contribution that covers all issues, at the same time, raised 
by fog computing including uncertainty, resiliency, reliability, heterogeneity and mobility. 
Furthermore, there is not work on fog federation where one can control and federate fog resources 
across multiple operating domains. Finally, all contributions assume the existence of the fog 
infrastructure and devise schemes/models based on this assumption. It will be interesting to develop 
a unified model for the fog design problem that takes into account all the parameters that have a 
significant impact on the infrastructure, the requirements of the fog service provider (e.g., expected 
amount of load/IoT devices/requests), the constraints of the physical environment (e.g., potential 
locations of routers/fog nodes), and the cost. 
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2 Benefits and Challenges of Edge Intelligence 

2.1 Introduction 
The large flow of unstructured data generated by a large variety of possible connected devices with 
various capacities has allowed the emergence of several IoT architectures. The common properties of 
these architectures are the capacities of transportation of the generated data to centralized platforms 
deployed either in backend systems or in the cloud. The advantage of cloud computing is to provide 
on-demand resources to achieve scalability in processing the big data collected from potentially 
billions of connected objects. In addition, Cloud computing permits to execute advanced data analytics 
as well as machine learning algorithms that are more and more provided as SaaS (Software as a Service) 
easing the conception, deployment and execution. However, centralizing the transportation of all the 
data and processing can be very costly consuming uselessly a lot of resources that could be saved if 
the processing is pushed to the boundary of the network if this is possible. Hence, for some services 
and applications that require very low latency, the centralized processing in the cloud represents a 
downside that is difficult to address. Thanks to Fog Computing technology, we can execute advanced 
data analytics and AI algorithms at the edge and close to the objects that generate the data [24]. This 
section aims to present the two approaches and compare them in terms of advantages and weakness 
as well as the scientific and technological challenges that are being addressed in distributed AI in the 
edge of the network.  

2.2 IoT Data Analytics and AI Analytics in the Cloud 
The large flow of unstructured data generated by a large variety of possible connected devices with 
various capacities has allowed the emergence of several IoT architectures. The common properties of 
these architectures are the capacities to transport of the generated data to centralized platforms, 
using standard protocols such MQTT and CoAP, store, process and analyse this data in these 
centralized platforms. To achieve scalability in processing the huge data that can be collected from 
remote objects, these platforms are deployed in cloud computing infrastructures and get benefits 
from the elasticity of available resources (processing, storing and communication). These centralized 
cloud computing infrastructures have been enabled by the huge advances in virtualization 
technologies and quickly adopted by IoT players motivated by the potential reduction of cost (vs 
deploying their own backend infrastructure) and time to market to deploy their new services. Hence, 
many cloud providers have provided a plethora of advanced data analytics and machine learning 
algorithms along with data streaming and storing services SaaS (Software as a Service) that can be 
used on-demand and as per-use billing by IoT services providers to design new IoT oriented intelligent 
services. 

2.3 AI Analytics from Cloud Computing to Edge Computing 
While this centralized approach is today mainstream approach, it introduces several drawbacks such 
a large response time not complying with some real-time applications constraints and huge 
communication resources usage since all the data need to be transported to the datacentres that are 
usually far away from the connected devices. Hence, the storage of the collected data in datacentres 
that can be located in different regions and countries raises numerous problems of security and 
privacy. Therefore, it appears that pushing data analytics and intelligent algorithms closer to IoT 
objects could constitute a very promising approach.  

Edge computing technology has made this possible since it provides computing infrastructure at the 
edge of the network where advanced data analytics and AI algorithms can be deployed to process 
data closer to it sources. This approach permits to reduce latency between data collection and 
processing/decision. It allows to resolve some problems of security and privacy of the collected data 
since it could remain closer to the sources (i.e. same country and regulation). In addition, real-time 
data processing, made possible by edge computing, opens up new possibilities. This approach permits 
therefore to distribute the intelligence in the network as close as possible to the connected objects 
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[25] and only transport important data and decision to the centralized system reducing not only the 
network resources consumption but also the latency of the decisions.  

This section will discuss how IoT platform has moved from stand-alone platforms into cloud based 
platforms integrating advance data analytics and AI algorithms. It then presents the limitations of this 
approach and how distribution of the intelligence closer to the connected objects could help 
improving the performances of these platforms, thanks to edge computing that provides the 
necessary computing/storage and communication resources at the boundaries of the network (Figure 
2-1) [26]. AI-powered edge computing will eventually help to increase operational efficiency with 
faster and more accurate predictions that will allow to reduce operation time and improve efficiency. 

 

 

Figure 2-1: Data Analytics from Edge to Cloud  

Since the intelligence is executed in a distributed manner close IoT devices and not executing it in a 
central place, there are several advantages to this approach [26] [27] as shown in Table 2-1. 

Table 2-1: Benefits of Edge Enhanced AI 

Value properties Description 

Lower response time 
IoT data processing is executed at the edge of the network and 
closer to the devices that transmit them reducing therefore 
response time of decision-making 

Higher privacy and security 

Data transmitted by IoT devices are not transported over large 
distance as in the central approach where it could be transported 
possibly across several administrative domains (including public-
Internet) exposing it to several risks of security and privacy leakage 
issues. IoT devices and edge computing nodes will be in close 
geographic area reducing the risks and allowing higher control. 
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Self-organized 

Intelligence in edge computing will allow standalone systems to 
take local decisions but also to collaborate with each other to allow 
the emergence of global Intelligence without the need of human 
operators. 

Higher flexibility 

Distributed AI from central cloud computing to edge computing will 
allow the emergence of innovative solutions that are flexible and 
sensitive to context. AI executed in the edge permits to take more 
efficiently into account situations and specificities (e.g. location, 
cost, capabilities, etc.) of the target system to control.  

 

2.4 Technical and Scientific Challenges 
While there are numerous benefits of deploying edge intelligence, the distribution of intelligence and 
decision-making among numerous edge computing points raises many challenges that must be 
overcome efficiently [28]. These challenges can be grouped into two parts that are (1) deployment 
models and (2) distributed intelligence.  

The first challenge, named deployment models is related to the deployment, orchestration and 
management of edge nodes to provide the necessary resources (computing, storage and 
communication) between IoT devices and cloud data centres. The deployed edge nodes consist of 
micro data centres that will be potentially deployed at large and be able to execute AI programs 
providing them necessary on-demand elastic local high computing, storage and communication 
capacities. Efficient and energy aware communication capabilities with IoT network gateways and/or 
IoT devices are necessary to collect data that is required for decision-making. Technologies such SDN 
(Software Defined Network) and virtualization are mandatory to instrument efficiently these edge 
data centres and execute AI based programs in a secure and isolated manner. Furthermore, container-
based virtualization technology (CVT) will also constitute a key-element to allow flexibility in the 
control and orchestration of the infrastructure from IoT devices to the cloud via the edge. 

The second group of challenges is related to solving the problem of convergence of distributed AI. 
Indeed, while distributing machine learning among numerous points of decision, there is a need to 
achieve not only local decisions but also global decisions. For that, there is a need to define a common 
knowledge model that can be used by distributed edge computing nodes in order to model and 
exchange knowledge that can be used by individual edge computing nodes to infer global decisions 
[29]. There is a need in particular to parallelize/distribute AI algorithms (e.g. Deep Learning algorithms) 
[30] [31]. In this case, the objective is to define new strategies to split AI models across different edge 
micro data centres as well duplication of data across these centres to train the underlying neural 
networks [32]. 

2.5 Use Cases of Distributed AI in the IoT-Edge-Cloud Continuum 
Industry 4.0 

In the industrial sector, improving productivity is a key element. Edge computing can contribute to the 
maximization of the productivity as it will transform the collected data from a large set of connected 
sensors that monitor the industrial process into valuable data which will help to improve the value 
chain as well as avoid accidents and predict failures [33]. The fast decisions that will be taken in the 
edge instead of the far end cloud will allow triggering real-time actions and messages to change or 
update the industrial process using connected actuators. Before reaching this objective, it is however 
necessary to fill the technological gap to allow the safe deployment of DAI (Distributed Artificial 
Intelligence) in the Edge. In particular, it is necessary to verify the authenticity and the credibility of 
the received data from IoT devices as it constitutes the input of the analysis and the decision making. 
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Moreover, edge computing ecosystems have to be prepared in order to deploy more applications, but 
also for the optimization of system operation. For this, management of secure identity has to be 
implemented to ensure that third parties access safely to the communications. This is also true for 
machine learning technologies that will contribute to the automation of the operations. Machine 
learning algorithms should be tested and validated in simulation environments before their 
deployment in the edge.   

Workers Safety 

For worker monitoring, an intelligent gateway is often used to collect positions / orientation / state of 
each employee through modules that are tasked to “learn” the normal behaviour of the employee [34] 
and be able in case of anomaly / attack or behaviour change to trigger an alarm. However, in this case, 
some false alarms often distort the decision making, interpreting a normal movement as an anomaly. 
Indeed, this is due to the fact that the processing power of the modules is not sufficient to distinguish 
between a normal activity and an exceptional situation. Besides, the backhaul mechanism for 
communication plays an important role in the routing of data to the monitoring centre.  

Urban IoT/Smart Cities 

Edge intelligence helps community leaders deploy smart urban projects to adapt to growing cities 
while reducing management costs. For this purpose, different IoT gateways, which have been 
designed by Huawei and Dell using the Niagara framework [35] developed by Tridium, aim to provide 
a commercial solution to instrument large IoT Networks and related generated data. The framework 
allows to collect and analyse building data in order to detect problems, carry out preventive 
maintenance and entrust decision-making tools to managers. From the gateways, it will also be 
possible to manage the temperature, quality of air and consumption of energy resources. However, 
in this kind of applications, some issues have to be addressed as the interaction between the different 
IoT modules, the control and orchestration, and the synchronization of different context.  

Indoor Localization/Tracking 

Indoor Localization includes many potential fields of application: medical, military, healthcare, etc. In 
all these domains, latency is considered as a real issue since the receiver can change its position at any 
time. To solve this problem, it is necessary to process localization data as close as possible to the 
tracked object. In order to achieve high accuracy and response time, edge computing combined with 
AI can be used to provide the necessary trusted installation environment to host localization 
algorithms (possibility as containers) at the edge of the network, provide the communication 
environment to communicate directly via gateways with the IoT objects that generate the raw 
localisation data [36].  

Smart Agriculture 

From drone data collection to connected automatic sprinklers, to numerous stand-alone sensors 
placed in plots, the agricultural sector is undergoing a major technological transformation. From cloud 
to connected objects, tools and practices have been evolving to increase the efficiency of the 
industry's productivity. Indeed, IoT is proving to be a way to optimize production and increase revenue 
while applying sustainable methods. Microsoft Azure and Schneider propose with Waterforce an IoT 
solution for measuring water consumption. Waterforce is developing SCADAFarm [37], a solution for 
remote control of plot watering devices and the supply of water points for livestock. The tool makes 
it possible to obtain the pressure in the equipment, to monitor the flows and detect the leaks, to know 
available water reserves, humidity rate of parcels and to receive alerts in case of breakdowns. 
Although the cost of installation is not an obstacle for the deployment of the solution, the 
establishment of the system requires a wide area communication network to transport all the data to 
backend cloud based application which make operational cost higher. Intelligence in the Edge 
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computing will certainly improve the solution taking decisions close to the farm while benefiting from 
global decisions taken in the cloud computing in coordination with the various Edges. 

3 Distributed Intelligence at the Edge 

3.1 Introduction 
This section introduces the technologies and challenges for implementing distributed learning system 
in hybrid cloud / edge environments using deep learning technologies. It starts by introducing the 
background knowledge for distributed training and inference approaches in deep learning algorithms, 
including deep learning parallelism approaches (data parallelism, model parallelism, and combination 
of the both) and frameworks used in distributed training (i.e. parameter server). It continues to 
introduce various technologies that can be employed to run deep neural networks in resource 
constraint edge environments, including various lightweight deep neural network models, federated 
learning, data parallelism and model parallelism for edge environments.  

3.2 Distributed Deep Learning Models and Architectures 
Deep learning refers to a class of machine learning technologies which are composed of multiple layers 
of non-linear operations for pattern classification and feature or representation learning, e.g. 
Convolutional Neural Networks (CNN) [38], Deep Belief Networks (DBN) [39], Deep Boltzmann 
Machines (DBM) [40], and Recurrent Neural Networks (RNN) [41]. Deep learning has achieved superior 
performance in many application fields, e.g. speech recognition, image and video classification, and 
language translation. It outperforms traditional shallow machine learning architecture as it can more 
efficiently represent non-linear functions, which means a significantly large (deep) architecture is 
required to compactly represent non-linear functions [42]. Research shows that the accuracy of deep 
learning can be significantly improved by increasing the learning scale in terms of the training dataset 
size and/or the model size [43] [44]. Realistic deep model training involves a large volume of training 
data (from 1TB to 1PB) and parameters (109 to 1012) [45]. Consequently, scaling up deep learning 
algorithms has become a key research focus in the community. Utilising GPUs (Graphics Processing 
Units) as a parallel method to train Deep Neural Networks (DNN) is a significant achievement in recent 
years to tackle modestly sized deep networks in practice [46]. However, the training speed-up is 
limited when the model cannot fit in the GPU memory [43].  

The trend is to implement the parallelism on a cluster of machines [43] [47]. These methods can be 
classified as data parallelism, model parallelism, or a mixture of both [48]. In data parallelism, the 
whole training dataset is divided into partitions. Each worker machine has a complete copy of the DNN 
model and performs training computation on the partitions assigned to it. In model parallelism, each 
machine computes on different parts of a single DNN model. The two parallelism models can be 
combined together, e.g. using model parallelism across GPUs on one machine and using data 
parallelism across machines. Currently, data parallelism is the most widely accepted scheme in 
practice. Pipeline parallelism is an emerging scheme by combining data and model parallelism [49] 
[50]. During the training process of these parallelism schemes, parameters generated by each worker 
need to be exchanged or synchronized, which leads to different parameter exchanging architectures, 
e.g. parameter servers [45] and Peer-to-Peer based approaches. The sections below will present more 
details on parallelism models and parameter exchange architectures.  

3.2.1 Parallelism Models 
Basic Concept in DNN Training 

A DNN model normally consists of one input layer, one output layer and a number of hidden layers 
and each layer consists of a number of artificial neurons. Each neuron generates an output signal by 
transforming input signals from other neurons and/or itself. This is achieved by feeding a weighted 
sum of input signals into an activation function.  
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A DNN model training normally consists of multiple epochs. Each epoch is an iteration that goes 
through all training samples in the dataset. One epoch contains multiple training iterations and each 
of them performs a training over a small portion of the whole dataset, called mini-batch. The DNN 
training process contains two major steps, i.e. forward and backward propagations. In the forward 
propagation step, the input dataset passes through DNN layers from the input layer to the output 
layer and generates output signals, i.e. the predicted results based on the input dataset. Prediction 
errors are calculated through a loss function taking the predicted results and the desired results as 
augments. In the backward propagation step, gradients of the loss function with respect to the model 
parameters are calculated from the output layer to the input layer through the chain rule of 
differentiation. A widely adopted parameter updating method is Stochastic Gradient Descent (SGD) 
which calculates a stochastic estimation of the gradient. In normal gradient descent, the gradient is 
calculated based on the summed errors of all input samples, whereas in SGD, the estimated gradient 
is calculated from a random selected data sample or mini-batch which contains a few data samples 
[44].  

This sequential process creates many challenges in parallelizing the training. The current parallelism 
schemes are introduced below. 

Data Parallelism 

In data parallelism (Figure 3-1), every worker of the cluster hosts a full copy of the whole DNN model. 
The whole dataset is divided into non-overlapping partitions and each worker is assigned one partition. 
Multiple workers can concurrently train the model with different partitions. During the training 
process, the parameters needs to be exchanged and synchronized between workers through 
centralized or decentralized methods which will be introduced in the following sections.  

The distributed algorithm for tuning the parameters contains two types, i.e. Synchronous Stochastic 
Gradient Descent (Sync-SGD) [51] and Asynchronous Stochastic Gradient Descent (Async-SGD) [52]. 
Sync-SGD consists of multiple training rounds. In each round, workers calculate the gradients using 
their local mini-batch; gradients of all workers need to be aggregated through a central server or peer-
to-peer based approach, and finally the newly updated parameters will be sent to all workers which 
will start the next round. Sync-SGD suffers from the straggler effect, i.e. one slow worker may delay 
the whole training process. Async-SGD is not round based. Each worker obtains the latest parameters 
from a central parameter server, calculates gradients using a local mini-batch of data, and sends out 
the results to the server which updates the parameters based on the newly arrived gradients. Async-
SGD suffers from the stale gradient problem, i.e. one worker may overwrite the global parameters 
which have been updated by other workers.  
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Figure 3-1: Data Parallelism for Deep Learning 
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Model Parallelism 
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Figure 3-2: Model Parallelism for Deep Learning 

In model parallelism (Figure 3-2), the whole DNN model is partitioned and each worker maintains one 
partition. The input dataset is also logically divided according to the partition scheme of the input layer. 
This is different from that in data parallelism. In model parallelism, the dataset of the same mini-batch 
is split vertically and the partitions are fed into the worker with the correspondent input layer, 
whereas in data parallelism, the dataset is split horizontally and each worker processes data of 
different mini-batches. In the forward and backward propagation process, data pass through workers 
according to the order of layers.  

Model parallelism provides a solution when the model is too large to fit in the memory of a single 
machine. However, a major challenge in minimizing the training time is to design the model partition 
scheme according to the capabilities of the underlying infrastructure including computational, storage 
and networking capabilities, which is a NP-Complete problem [53]. The sections below will introduce 
more details on the model partitioning approaches in hybrid edge and cloud environments.  
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(b) Pipedream [50] 

Figure 3-3: Pipeline Parallelisms 
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In model parallelism, each worker starts to work only after the results from the previous workers have 
been received. Therefore, only one worker is working at any point of time. Pipeline parallelism (Figure 
3-3a) is proposed to resolve the problem. Gpipe [49] proposes to cut a mini-batch into multiple micro-
batches. When a worker has transmitted a processed micro-batch to the next worker, both workers 
can work simultaneously. A smaller micro-batch size leads to a shorter idle time as shown in Figure 
3-3a. In the backward propagation stage, the parameter updates need special care to guarantee 
correctness of the gradient calculation. Gpipe uses the same parameters for all micro-batches within 
a mini-batch. Parameters are updated at the end of each mini-batch. Pipedream [50] (Figure 3-3b) 
feeds mini-batches consecutively into the pipeline as Gpipe does for micro-batches. However, 
Pipedream takes a different scheduling approach. Each worker interleaves the processing of forward 
and backward propagation so that no workers are idle in the steady state. To ensure the correctness 
of the training, active parameters in the model are saved into different versions. The same set of 
parameters is applied to the same forward and backward propagation process.  

3.2.2 Parameter Exchange Architectures 
Parameter exchange between workers in model parallelism is straightforward, whereas in data 
parallelism, parameter synchronization between workers is a major challenge. Stochastic gradient 
descent is the current dominant algorithm for training deep neural networks. During the training, 
workers need to access shared parameters to refine the model. Different distributed computation 
architectures have been proposed to implement the data parallelism as shown in Figure 3-4.  

Parameter Server Group

Data 
Partitions

w Δw w wΔw Δw

Mgr

Worker Group X

MgrModel 
Replica

Mgr Mgr Mgr

Worker Group A Worker Group B Worker Group C

 

(a) Parameter Server 

M
ac

h
in

e
 3

M
ach

in
e

 4

M
ac

h
in

e
 1

M
ach

in
e

 2

Δw
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Figure 3-4: Parameter Server, Peer-to-Peer and AllReduce Architecture 

The parameter server architecture [43] [45] consists of one server group and a number of worker 
groups with one manager in each group to coordinate the server or worker nodes. The architecture 
supports running of multiple machine learning algorithms simultaneously. Parameter namespaces are 
used to isolate different algorithms. The parameters of each namespace is partitioned and duplicated 
across servers to achieve reliability and scalability. Multiple worker groups can share the same 
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namespace to query or update global parameters. The parameter server architecture is defined for 
data parallelism. However, it can be extended to support model parallelism by splitting models across 
workers as shown in Figure 3-4a. During the training process, each worker node runs the whole model 
on a data partition and sends parameter updates (subgradients) to the parameter server group. The 
server group calculates a new set of parameters based on the subgradients and sends new parameters 
to the workers.  

In the peer-to-peer based architecture (Figure 3-4b), each peer sends parameter updates to all other 
peers directly. This scheme can remove the communication bottleneck between workers and 
parameter servers but also increase traffic between workers. Therefore, parameter compression and 
reducing the parameter updating rates are proposed to reduce the traffic [54].  

Both parameter server and the peer-to-peer architectures can be enhanced by employing the 
AllReduce operation (Figure 3-4c) to reduce traffic, i.e. aggregate data through a reduce tree [55] [56]. 
AllReduce is a primitive of Message Passing Interface (MPI) which is widely used in parallel computing. 
It logically contains a Reduce and a Broadcast phase, i.e. a dataset is reduced to a smaller set by 
functions and then the result is broadcasted to all workers.  

3.3 Deep Learning Technologies for the Edge 

3.3.1 Lightweight Models for the Edge 
Group convolution 

Group convolution is a common technique for reducing the CNN model parameters, which was first 
proposed in AlexNet [57] with the aim of splitting the model into two GPUs.  

A convolutional layer is to transform a W_in x H_in x M dimension feature map into a W_out x H_out 
x N dimension feature map (Figure 3-5a), where W_in, H_in, W_out and H_out are the spatial width 
and height of the input and output feature maps, and M and N are the depth of input and output 
feature maps (i.e. the number of channels). In the standard CNNs, each point on a W_out x H_out 
output channel is calculated by the sum of the results after applying one K x K dimension filter (kernel) 
on a certain region of each input channel. Therefore, the total computation steps of the standard 
convolution layer is K x K x M x N x W_out x H_out.  

Group convolution separates input channels and filters into groups so that each group of filters are 
only applied to the correspondent input channels of the same group (instead of all input channels in 
the standard convolution). Consequently, computation costs are reduced. An extreme version of 
group convolution is to set each input channel as a group, which becomes depthwise separable 
convolution as described in Xception [58]. 
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Figure 3-5: MobileNets Architecture 
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Mobilenet [59] proposes a lightweight CNN architecture for resource constraint devices using 
depthwise separable convolution. In order to reduce the parameter size, MobileNet splits the 
standard convolution into two steps, i.e. depthwise convolution (filtering) and pointwise convolution 
(combining), as illustrated in (Figure 3-5b). In the first step, each input channel is applied with one K x 
K filter, and consequently M input channels generate M intermediate feature maps. The second step 
is similar to the standard convolution except the filter size is 1 x 1. The M intermediate feature maps 
are combined together N times with different sets of weights to generate N output maps which will 
be the input of the next layer. The computation steps of MobileNet is K x K x W_out x H_out x M + 1 x 
1 x M x N x W_out x H_out. The ratio of the computation cost of MobileNet to the standard CNN is 
1/N+1/(KxK). MobileNet can achieves 8 to 9 times less computation costs than standard CNN while 
using 3x3 depthwise separable convolutions [59]. The performance of MobileNet is further improved 
by MobileNetV2 [60] through introducing an inverted residual structure with a linear bottleneck.  

As the pointwise convolution is performed over all input feature maps, the computation cost can be 
further reduced by applying group convolution. However, if two consecutive layers employ group 
convolutions, a side effect is that each output channel is only generated from a small portion of input 
channels. ShuffleNet [61] proposes a shuffle operation between two group convolution layers to 
remove the side effect.  

Other Approaches in Reducing CNN Parameters 

Besides group convolution, various approaches to reduce CNN parameters have been proposed. 
SqueezeNet [62] reduces parameters by three strategies: 1) Replacing majority of 3x3 filters with 1x1 
filters; 2) Reducing the input channel numbers for the 3x3 filters; 3) Delaying down sampling layers 
(pooling). Based on these design strategies, SqueezeNet proposes a Fire module which consists of one 
squeeze convolution layer and one expand layer. The squeeze convolution layer only contains 1x1 
filters, whereas the expand layer contains a mixture of 1x1 and 3x3 filters. SqueezeNet can achieve 
AlexNet level accuracy on ImageNet with 50 times less parameters. Deep Fried Convnets [63] proposes 
to reduce the parameters in the CNN fully connected layer through reparameterizing the matrix-
vector multiplication using Adaptive Fastfood transform.  

Network Compression 

Q-CNN [64] proposes to reduce memory footprint and increase computation efficiency through 
quantization of the parameters. Xnor-net [65] proposes to approximate the weights and the 
intermediate inputs to the convolution layers and fully connected layers through binary values. 
HashNet [66] employs a hash function to group weights and the same group share the same weight. 
DeepCompression [67] proposes to compress the model through a 3-stage pipeline, i.e. pruning, 
quantization and Huffman coding. Knowledge distillation provides a network compression approach 
by transferring knowledge from a larger teacher model to a smaller student network [68] [69] [70].  

3.3.2 Federated Learning 
The datasets generated in local devices, e.g. mobile phones and CCTV cameras, may contain privacy 
sensitive information. Current cloud based training methods require to upload the dataset from local 
devices to the cloud, which may violate users’ privacy. Federated learning denotes a distributed 
learning technique which trains a shared model from distributed dataset which remains in the local 
devices. In [71], the authors propose a federated learning approach which is similar to data parallelism, 
i.e. each device computes parameter updates and sends the gradients to a server which performs 
FederatedAveraging. A specific number of devices are randomly selected in each round to calculate 
parameter updates. The chosen devices use the predefined mini-batch size and epoch number to 
calculate the parameters and send the results to the server for aggregation. In [72], the authors 
propose two ways to reduce communication costs while uploading parameters to the server, i.e. 
structured updates and sketched updates. In [73], the authors propose to increase the learning 
accuracy by allowing a small portion of globally shared datasets.  
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3.3.3 Improving Communication Efficiency in Data Parallelism 
Gradient Quantisation 

Communication costs is a well-known bottleneck in distributed DNN training while exchanging 
gradients and parameters between nodes. In [74], the authors propose a sub-gradient quantisation 
scheme to reduce the communication costs for data parallelism based DNN training using Sync-SGD. 
The gradients can be represented by 1 bit. The key concept is to keep the quantisation error and add 
the error to the respective gradient of the following mini-batch before quantisation. Terngrad [75] 
employs ternary gradients, i.e. {-1, 0, 1}, for accelerate distributed DNN training with data parallelism 
and Sync-SGD; it employs layer-wise ternarizing and gradient clipping to improve convergence. QSGD 
[76] provides a gradient quantisation mechanism to balance the communication cost and convergence 
time. The bits to be communicated can be specified per iteration.  

Gradient Sparsification 

During data parallelism based training, the calculated sub-gradients are normally sparse and 
consequently the communication costs can be reduced by only sending the significant gradients to 
the parameter server or other nodes. This approach is called gradient sparsification. A key challenge 
is to decide which gradients are significant to the parameter updating process. ESGD [77] compares 
the current and previous values of the loss function. If the loss becomes smaller, the algorithm will 
continue using the coordinates of the currently used gradients. Otherwise, the gradients will be 
randomly selected based on the weight value. DGC (Deep Gradient Compression) [78] only transmits 
gradients above a threshold but keeps other gradients locally which will be transmitted when the 
accumulated value is above the threshold. In [79], the authors propose to minimize the coding length 
of gradients using convex optimisation. The gradients are dropped out based on certain probabilities 
and the reserved gradients are amplified according to the correspondent probability values to remove 
the bias introduced by sparsification.  

3.3.4 Model Parallelism based Distributed Inference 

Partition 1
Partition 2

Partition 3

Input Layer

Output Layer

 

Figure 3-6: DeepThings Model Partition Scheme [81] 

As the footprint of a full DNN model may exceed the capacity of an edge device, one solution is to 
spread the trained model across multiple edge devices. MoDNN [80] proposes a MapReduce based 
model to partition a pre-trained DNN model into a number of mobile devices. DeepThings [81] 
proposes a partition scheme for deploying early stage layers of CNN in multiple resource constrained 
IoT edge devices. CNN behaves like a compressor which extracts visual features and removes 
redundant information from the images. Therefore, early stage layers generate much larger 
dimensional data than later stage layers. Consequently, they require much higher memory footprints 
and communication costs (if transmitted) than later stage layers. As a result, a resource constrained 
device may not be able to host even one single early stage layer. As each neuron in a CNN layer only 
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depends on a few local neurons in its previous layers, CNN layers can be partitioned vertically to 
include all required neurons of each layer for calculating the top layer neurons in the same partition 
(as shown in Figure 3-6). These partitions can be executed independently by individual edge devices 
without interacting with other vertical partitions. The output of these partitions need to be aggregated 
to generate the final inference result. This horizontal partition can be performed over an intermediate 
layer with a low data output.  

3.3.5 DNN Models with Early Exits 
In edge environments, IoT devices have limited computational resources. Deploying a shallow neural 
network in these devices may suffer from low inference accuracies, whereas deploying a large neural 
network model in the cloud may suffer from long latencies. Using model parallelism to split the model 
between IoT devices and the cloud may not enhance the inference performance due to long network 
delays. DDNN [82] and Branchynet 0 propose a distributed and hierarchical deep neural network 
architecture with the layers deployed across IoT devices, edge cloud and central cloud. DDNN is 
different from model parallelism is that DDNN introduces local exits at certain point along the 
inference path, e.g. at the device and/or edge levels. The design rationale is that if inference results 
have reached a certain accuracy level, there is no need to pass current results to upper layers. 
Consequently, communication costs can be significantly reduced.  
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Figure 3-7: DDNN Architecture 

The DDNN architecture is shown in Figure 3-7. Each IoT device receives input data and processes it 
through a full shallow neural network. The inference results from a group of devices are aggregated 
through a local function, e.g. max pooling, average pooling or concatenation. A normalized entropy 
threshold is used as the inference confidence criteria. If the confidence is above a certain threshold, 
the inference for the current input completes. Otherwise, intermediate inference results are sent to 
the higher level aggregation function which prepares input data for upper layers. This process 
continues until the inference reaches the final layer. Note that intermediate inference results that are 
sent to the upper layer is the same as the input data to the fully connected layer at the local level.  

4 Summary 
Both edge computing and distributed artificial intelligence are fast growing research areas, and are 
tightly coupled with many other technological areas, e.g. Internet of Things, Big Data, 5G, Cloud 
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Computing, Smart Manufacturing, and Autonomous Vehicles. This chapter focuses on a specific 
perspective of these areas, i.e. the challenges in deploying, executing, and managing distributed 
intelligent applications over the edge to cloud continuum. More specifically, this chapter has discussed 
the background of the emergence of edge computing, the approaches for managing heterogeneous 
computational resources over the edge and cloud, the benefits, challenges and uses cases of deploying 
distributed artificial intelligence and data analytics applications across edge and cloud, and various 
distributed deep learning technologies that can potentially be employed in edge applications. Besides 
the above mentioned technologies, there are many other challenges in these areas, e.g. managing the 
data from things and intermediate devices, and creating a complete edge to cloud computing 
ecosystem encompassing heterogeneous networking, storage, and computational resources from 
different providers. Furthermore, current distributed deep learning algorithms for edge computing 
are mainly designed for inference. Training at the edge is still at the infant stage.  
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